

Higher Mathematics

Vectors

Examples

© Higher Still Notes 2015

This document is provided through HSN extra. Use is permitted within the registered department only.

For more details see http://www.hsn.uk.net/extra/terms/full/

Contents

3	Magnitude	EF	3
	Distance in Three Dimensions		5
5	Addition and Subtraction of Vectors	EF	6
	Using Components		6
6	Multiplication by a Scalar	EF	8
7	Position Vectors	EF	10
9	Collinearity	EF	11
10	Dividing Lines in a Ratio	EF	12
	Using the Section Formula Further Examples		13 14
11	The Scalar Product	EF	17
	The Component Form of the Scalar Product		19
12	The Angle Between Vectors	EF	21
13	Perpendicular Vectors	EF	24
14	Properties of the Scalar Product	EF	26

3 Magnitude

EF

1. Given
$$\underline{\boldsymbol{u}} = \begin{pmatrix} 5 \\ -12 \end{pmatrix}$$
, find $|\underline{\boldsymbol{u}}|$.

3 Magnitude

EF

2. Find the length of
$$\underline{\mathbf{a}} = \begin{pmatrix} -\sqrt{5} \\ 6 \\ 3 \end{pmatrix}$$
.

3 Magnitude

EF

Distance in Three Dimensions

Find the distance between the points (-1,4,1) and (0,5,-7).

5 Addition and Subtraction of Vectors

EF

Using Components

1. Given
$$\underline{\boldsymbol{u}} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$$
 and $\underline{\boldsymbol{v}} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$, calculate $\underline{\boldsymbol{u}} + \underline{\boldsymbol{v}}$ and $\underline{\boldsymbol{u}} - \underline{\boldsymbol{v}}$.

5 Addition and Subtraction of Vectors

EF

Using Components

2. Given
$$\underline{p} = \begin{pmatrix} 4 \\ \frac{3}{2} \\ 3 \end{pmatrix}$$
 and $\underline{q} = \begin{pmatrix} -1 \\ 3 \\ -\frac{6}{5} \end{pmatrix}$, calculate $\underline{p} - \underline{q}$ and $\underline{q} + \underline{p}$.

6 Multiplication by a Scalar

EF

1. Given
$$\underline{\boldsymbol{v}} = \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix}$$
, find $3\underline{\boldsymbol{v}}$.

6 Multiplication by a Scalar

EF

2. Given
$$\underline{r} = \begin{pmatrix} -6 \\ 3 \\ 1 \end{pmatrix}$$
, find $-4\underline{r}$.

7 Position Vectors

EF

R is the point (2, -2, 3) and S is the point (4, 6, -1). Find \overrightarrow{RS} .

Collinearity 9

EF

A is the point (1, -2, 5), B(8, -5, 9) and C(22, -11, 17). Show that A, B and C are collinear.

1. P is the point (-2, 4, -1) and R is the point (8, -1, 19). The point T divides PR in the ratio 2:3. Find the coordinates of T.

EF

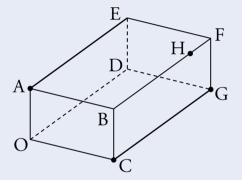
Using the Section Formula

2. P is the point (-2, 4, -1) and R is the point (8, -1, 19). The point T divides PR in the ratio 2:3. Find the coordinates of T.

EF

Further Examples

3. The cuboid OABCDEFG is shown in the diagram.



The point A has coordinates (0,0,5), C(8,0,0) and G(8,12,0). The point H divides BF in the ratio 4:1. Find the coordinates of H.

EF

Further Examples

4. The points P(6,1,-3), Q(8,-3,1) and R(9,-5,3) are collinear. Find the ratio in which Q divides PR.

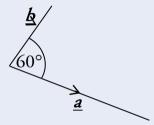
EF

Further Examples

5. The points A(7,-4,-4), B(13,5,-7) and C are collinear. Given that B divides AC in the ratio 3:2, find the coordinates of C.

EF

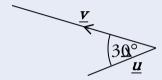
1. Two vectors, \underline{a} and \underline{b} have magnitudes 7 and 3 units respectively and are at an angle of 60° to each other as shown below.



What is the value of **a.b**?

EF

2. The vector $\underline{\boldsymbol{u}}$ has magnitude k and $\underline{\boldsymbol{v}}$ is twice as long as $\underline{\boldsymbol{u}}$. The angle between $\underline{\boldsymbol{u}}$ and $\underline{\boldsymbol{v}}$ is 30° , as shown below.



Find an expression for $\underline{u}.\underline{v}$ in terms of k.

EF

The Component Form of the Scalar Product

3. Find
$$\underline{\boldsymbol{p}}.\underline{\boldsymbol{q}}$$
, given that $\underline{\boldsymbol{p}} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ and $\underline{\boldsymbol{q}} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$.

EF

The Component Form of the Scalar Product

4. If A is the point (2,3,9), B(1,4,-2) and C(-1,3,-6), calculate $\overrightarrow{AB}.\overrightarrow{AC}$.

12 The Angle Between Vectors

EF

1. Calculate the angle θ between vectors $\mathbf{p} = 3\underline{\mathbf{i}} + 4\mathbf{j} - 2\underline{\mathbf{k}}$ and $\mathbf{q} = 4\underline{\mathbf{i}} + \mathbf{j} + 3\underline{\mathbf{k}}$.

12 The Angle Between Vectors

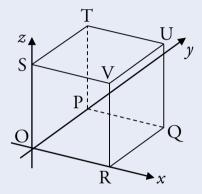
EF

2. K is the point (1, -7, 2), L(-3, 3, 4) and M(2, 5, 1). Find KLM.

12 The Angle Between Vectors

EF

3. The diagram below shows the cube OPQRSTUV.



The point R has coordinates (4,0,0).

- (a) Write down the coordinates of T and U.
- (b) Find the components of \overrightarrow{RT} and \overrightarrow{RU} .
- (c) Calculate the size of angle TRU.

13 Perpendicular Vectors

EF

1. Two vectors are defined as $\underline{\mathbf{a}} = 4\underline{\mathbf{i}} + 2\underline{\mathbf{j}} - 5\underline{\mathbf{k}}$ and $\underline{\mathbf{b}} = 2\underline{\mathbf{i}} + \underline{\mathbf{j}} + 2\underline{\mathbf{k}}$. Show that $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ are perpendicular.

13 Perpendicular Vectors

EF

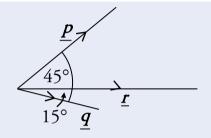
2.
$$\overrightarrow{PQ} = \begin{pmatrix} 4 \\ a \\ 7 \end{pmatrix}$$
 and $\overrightarrow{RS} = \begin{pmatrix} 2 \\ -3 \\ a \end{pmatrix}$ where *a* is a constant.
Given that \overrightarrow{PQ} and \overrightarrow{RS} are perpendicular, find the value of *a*.

14 Properties of the Scalar Product

EF

1. In the diagram, $|\underline{p}| = 3$, $|\underline{r}| = 4$ and $|\underline{q}| = 2$.

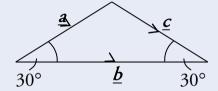
Calculate $\underline{p} \cdot (\underline{q} + \underline{r})$.



14 Properties of the Scalar Product

EF

2. In the diagram below $|\underline{\mathbf{a}}| = |\underline{\mathbf{c}}| = 2$ and $|\underline{\mathbf{b}}| = 2\sqrt{3}$.



Calculate $\underline{a} \cdot (\underline{a} + \underline{b} + \underline{c})$.