

Higher Mathematics

Trigonometry

Examples

© Higher Still Notes 2015

This document is provided through HSN extra. Use is permitted within the registered department only.

For more details see http://www.hsn.uk.net/extra/terms/full/

Contents

3	Solving Trigonometric Equations	RC	3
4	Trigonometry in Three Dimensions	EF	12
5	Compound Angles	EF	14
	Finding Trigonometric Ratios Using compound angle formulae to confirm identities		17 18
6	Double-Angle Formulae	EF	20
7	Further Trigonometric Equations	RC	22
	Solving equations involving sin2x and either sinx or cosx Solving equations involving cos2x and cosx Solving equations involving cos2x and sinx		22 23 24
8	Expressing $p\cos x + q\sin x$ in the form $k\cos(x - a)$	EF	25
9	Expressing $p\cos x + q\sin x$ in other forms	EF	27
10	Multiple Angles	EF	29
11	Maximum and Minimum Values	EF	30
12	Solving Equations	RC	31
13	Sketching Graphs of $y = p\cos x + q\sin x$	EF	33

RC

1. Solve
$$\sin x^{\circ} = \frac{1}{2}$$
 for $0 < x < 360$.

RC

2. Solve $\cos x^{\circ} = -\frac{1}{\sqrt{5}}$ for 0 < x < 360.

RC

3. Solve $\sin x^{\circ} = 3$ for 0 < x < 360.

RC

4. Solve $\tan x^{\circ} = -5$ for 0 < x < 360.

RC

5. Solve $2\sin 2x^{\circ} - 1 = 0$ where $0 \le x \le 360$.

RC

6. Solve $\sqrt{2}\cos 2x = 1$ where $0 \le x \le \pi$.

RC

7. Solve $4\cos^2 x = 3$ where $0 < x < 2\pi$.

RC

8. Solve $3\tan(3x^{\circ} - 20^{\circ}) = 5$ where $0 \le x \le 360$.

RC

9. Solve $\cos(2x + \frac{\pi}{3}) = 0.812$ for $0 < x < 2\pi$.

4 Trigonometry in Three Dimensions

EF

1. The triangular prism ABCDEF is shown below.

Calculate the acute angle between:

- (a) The line AF and the plane ABCD.
- (b) AE and ABCD.

4 Trigonometry in Three Dimensions

EF

2. ABCDEFGH is a cuboid with dimensions $12 \times 8 \times 8$ cm as shown below.

- (a) Calculate the size of the angle between the planes AFGD and ABCD.
- (b) Calculate the size of the acute angle between the diagonal planes AFGD and BCHE.

EF

1. Expand and simplify $\cos(x^{\circ} + 60^{\circ})$.

EF

2. Show that $\sin(a+b) = \sin a \cos b + \cos a \sin b$ for $a = \frac{\pi}{6}$ and $b = \frac{\pi}{3}$.

EF

3. Find the exact value of sin 75°.

EF

Finding Trigonometric Ratios

4. Acute angles
$$p$$
 and q are such that $\sin p = \frac{4}{5}$ and $\sin q = \frac{5}{13}$. Show that $\sin(p+q) = \frac{63}{65}$.

EF

Using compound angle formulae to confirm identities

5. Show that
$$\sin\left(x - \frac{\pi}{2}\right) = -\cos x$$
.

EF

Using compound angle formulae to confirm identities

6. Show that
$$\frac{\sin(s+t)}{\cos s \cos t} = \tan s + \tan t$$
 for $\cos s \neq 0$ and $\cos t \neq 0$.

6 Double-Angle Formulae

EF

1. Given that $\tan \theta = \frac{4}{3}$, where $0 < \theta < \frac{\pi}{2}$, find the exact value of $\sin 2\theta$ and $\cos 2\theta$.

6 Double-Angle Formulae

EF

2. Given that $\cos 2x = \frac{5}{13}$, where $0 < x < \pi$, find the exact values of $\sin x$ and $\cos x$.

7 Further Trigonometric Equations

RC

Solving equations involving sin2x and either sinx or cosx

1. Solve $\sin 2x^{\circ} = -\sin x^{\circ}$ for $0 \le x < 360$.

7 Further Trigonometric Equations

RC

Solving equations involving cos2x and cosx

2. Solve $\cos 2x = \cos x$ for $0 \le x \le 2\pi$.

7 Further Trigonometric Equations

RC

Solving equations involving cos2x and sinx

3. Solve $\cos 2x = \sin x$ for $0 < x < 2\pi$.

8 Expressing $p\cos x + q\sin x$ in the form $k\cos(x - a)$

EF

1. Write $5\cos x^{\circ} + 12\sin x^{\circ}$ in the form $k\cos(x^{\circ} - a^{\circ})$ where $0 \le a < 360$.

8 Expressing $p\cos x + q\sin x$ in the form $k\cos(x - a)$

EF

2. Write $5\cos x - 3\sin x$ in the form $k\cos(x-a)$ where $0 \le a < 2\pi$.

9 Expressing $p\cos x + q\sin x$ in other forms

EF

1. Write $4\cos x^{\circ} + 3\sin x^{\circ}$ in the form $k\sin(x^{\circ} + a^{\circ})$ where $0 \le a < 360$.

9 Expressing $p\cos x + q\sin x$ in other forms

EF

2. Write $\cos x - \sqrt{3} \sin x$ in the form $k \cos(x+a)$ where $0 \le a < 2\pi$.

10 Multiple Angles

EF

Write $5\cos 2x^{\circ} + 12\sin 2x^{\circ}$ in the form $k\sin(2x^{\circ} + a^{\circ})$ where $0 \le a < 360$.

Maximum and Minimum Values

EF

Write $4\sin x + \cos x$ in the form $k\cos(x-a)$ where $0 \le a \le 2\pi$ and state: (i) the maximum value and the value of $0 \le x < 2\pi$ at which it occurs (ii) the minimum value and the value of $0 \le x < 2\pi$ at which it occurs.

12 Solving Equations

RC

1. Solve $5\cos x^{\circ} + \sin x^{\circ} = 2$ where $0 \le x < 360$.

12 Solving Equations

RC

2. Solve $2\cos 2x + 3\sin 2x = 1$ where $0 \le x < 2\pi$.

13 Sketching Graphs of $y = p\cos x + q\sin x$

EF

- 1. (a) Write $7\cos x^{\circ} + 6\sin x^{\circ}$ in the form $k\cos(x^{\circ} a^{\circ})$, $0 \le a < 360$. (b) Hence sketch the graph of $y = 7\cos x^{\circ} + 6\sin x^{\circ}$ for $0 \le x \le 360$.

13 Sketching Graphs of $y = p\cos x + q\sin x$

EF

2. Sketch the graph of $y = \sin x^{\circ} + \sqrt{3} \cos x^{\circ}$ for $0 \le x \le 360$.

13 Sketching Graphs of $y = p\cos x + q\sin x$

EF

- 3. (a) Write $5\sin x^{\circ} \sqrt{11}\cos x^{\circ}$ in the form $k\sin(x^{\circ} a^{\circ})$, $0 \le a < 360$. (b) Hence sketch the graph of $y = 5\sin x^{\circ} \sqrt{11}\cos x^{\circ} + 2$, $0 \le x \le 360$.