

Higher Mathematics

Sequences

Examples

© Higher Still Notes 2015

This document is provided through HSN extra. Use is permitted within the registered department only.

For more details see http://www.hsn.uk.net/extra/terms/full/

Contents

1	Introduction to Sequences	Α	3
	Recurrence Relations		3
2	Linear Recurrence Relations	Α	4
4	The Limit of a Sequence	А	6
5	Finding a Recurrence Relation for a Sequence	A	8

1 Introduction to Sequences

A

Recurrence Relations

The value of an endowment policy increases at the rate of 5% per annum. The initial value is £7000.

- (a) Write down a recurrence relation for the policy's value after n years.
- (b) Calculate the value of the policy after 4 years.

2 Linear Recurrence Relations

- 1. A patient is injected with 156 ml of a drug. Every 8 hours, 22% of the drug passes out of his bloodstream. To compensate, a further 25 ml dose is given every 8 hours.
 - (a) Find a recurrence relation for the amount of drug in his bloodstream.
 - (b) Calculate the amount of drug remaining after 24 hours.

2 Linear Recurrence Relations

2. A sequence is defined by the recurrence relation $u_{n+1} = 0.6u_n + 4$ with $u_0 = 7$. Calculate the value of u_3 and the smallest value of n for which $u_n > 9.7$.

The Limit of a Sequence

- 1. The deer population in a forest is estimated to drop by 7.3% each year. Each year, 20 deer are introduced to the forest. The initial deer population is 200.
 - (a) How many deer will there be in the forest after 3 years?
 - (b) What is the long term effect on the population?

4 The Limit of a Sequence

A

2. A sequence is defined by the recurrence relation $u_{n+1} = ku_n + 2k$ and the first term is u_0 .

Given that the limit of the sequence is 27, find the value of k.

5 Finding a Recurrence Relation for a Sequence

A sequence is defined by $u_{n+1} = au_n + b$ with $u_1 = 4$, $u_2 = 3.6$ and $u_3 = 2.04$.

Find the values of *a* and *b*.