

Higher Mathematics

Polynomials and Quadratics

Examples

© Higher Still Notes 2015

This document is provided through HSN extra. Use is permitted within the registered department only.

For more details see http://www.hsn.uk.net/extra/terms/full/

Contents

1	Quadratics	EF	3
2	The Discriminant	EF	6
3	Completing the Square	EF	10
4	Sketching Parabolas	EF	14
5	Determining the Equation of a Parabola	RC	17
6	Solving Quadratic Inequalities	RC	20
7	Intersections of Lines and Parabolas	RC	25
9	Synthetic Division Using synthetic division to factorise Using synthetic division to solve equations The Factor Theorem and Remainder Theorem	RC	27 31 32 33
10	Finding Unknown Coefficients	RC	34
11	Finding Intersections of Curves	RC	36
12	Determining the Equation of a Curve	RC	40

1 Quadratics

EF

1. Find the roots of $x^2 - 2x - 3 = 0$.

1 Quadratics

2. Solve
$$x^2 + 8x + 16 = 0$$
.

1 Quadratics

EF

3. Find the roots of $x^2 + 4x - 1 = 0$.

EF

1. Find the nature of the roots of $9x^2 + 24x + 16 = 0$.

EF

2. Find the values of q such that $6x^2 + 12x + q = 0$ has real roots.

EF

3. Find the range of values of *k* for which the equation $kx^2 + 2x - 7 = 0$ has no real roots.

EF

4. Show that $(2k+4)x^2 + (3k+2)x + (k-2) = 0$ has real roots for all real values of k.

1. Write
$$y = x^2 + 6x - 5$$
 in the form $y = (x + p)^2 + q$.

2. Write
$$x^2 + 3x - 4$$
 in the form $(x + p)^2 + q$.

- 3. Write $y = x^2 + 8x 3$ in the form $y = (x + a)^2 + b$ and then state: (i) the axis of symmetry, and

 - (ii) the minimum turning point of the parabola with this equation.

- 4. A parabola has equation $y = 4x^2 12x + 7$. (a) Express the equation in the form $y = (x + a)^2 + b$.
 - (b) State the turning point of the parabola and its nature.

4 Sketching Parabolas

EF

1. Sketch the graph of $y = x^2 - 8x + 7$.

4 Sketching Parabolas

EF

2. Sketch the parabola with equation $y = -x^2 - 6x - 9$.

4 Sketching Parabolas

EF

3. Sketch the curve with equation $y = 2x^2 - 8x + 13$.

5 Determining the Equation of a Parabola

RC

1. A parabola passes through the points (1,0), (5,0) and (0,3). Find the equation of the parabola.

5 Determining the Equation of a Parabola

RC

2. Find the equation of the parabola shown below.

5 Determining the Equation of a Parabola

RC

3. Find the equation of the parabola shown below.

RC

1. Solve
$$x^2 + x - 12 < 0$$
.

RC

2. Find the values of x for which $6+7x-3x^2 \ge 0$.

RC

3. Solve
$$2x^2 - 5x - 3 > 0$$
.

RC

4. Find the range of values of x for which the curve $y = \frac{1}{3}x^3 + 2x^2 - 5x + 3$ is strictly increasing.

RC

5. Find the values of q for which $x^2 + (q-4)x + \frac{1}{2}q = 0$ has no real roots.

7 Intersections of Lines and Parabolas

RC

1. Show that the line y = 5x - 2 is a tangent to the parabola $y = 2x^2 + x$ and find the point of contact.

7 Intersections of Lines and Parabolas

RC

2. Find the equation of the tangent to $y = x^2 + 1$ that has gradient 3.

RC

1. Given $f(x)=x^3+x^2-22x-40$, evaluate f(-2) using synthetic division.

RC

2. Show that x-4 is a factor of $2x^4 - 9x^3 + 5x^2 - 3x - 4$.

RC

3. Given $f(x) = x^3 - 37x + 84$, show that x = -7 is a root of f(x) = 0, and hence fully factorise f(x).

RC

4. Show that x = -5 is a root of $2x^3 + 7x^2 - 9x + 30 = 0$, and hence fully factorise the cubic.

RC

Using synthetic division to factorise

5. Fully factorise $2x^3 + 5x^2 - 28x - 15$.

RC

Using synthetic division to solve equations

6. Find the solutions of $2x^3 - 15x^2 + 16x + 12 = 0$.

RC

The Factor Theorem and Remainder Theorem

7. Find the quotient and remainder when $f(x) = 4x^3 + x^2 - x - 1$ is divided by x + 1, and express f(x) as (x + 1)q(x) + f(b).

10 Finding Unknown Coefficients

RC

1. Given that x-3 is a factor of $x^3 - x^2 + px + 24$, find the value of p.

10 Finding Unknown Coefficients

RC

When f(x) = px³ + qx² −17x + 4q is divided by x − 2, the remainder is 6, and x − 1 is a factor of f(x).
 Find the values of p and q.

RC

1. Find the points of intersection of the line y = 4x - 4 and the parabola $y = 2x^2 - 2x - 12$.

RC

2. Find the coordinates of the points of intersection of the cubic $y = x^3 - 9x^2 + 20x - 10$ and the line y = -3x + 5.

RC

3. The curves $y = -x^2 - 2x + 4$ and $y = x^3 - 6x^2 + 12$ are shown below.

Find the *x*-coordinates of A, B and C, where the curves intersect.

RC

4. Find the *x*-coordinates of the points where the curves $y = 2x^3 - 3x^2 - 10$ and $y = 3x^3 - 10x^2 + 7x + 5$ intersect.

12 Determining the Equation of a Curve

RC

1. Find the equation of the cubic shown in the diagram below.

12 Determining the Equation of a Curve

RC

2. Find the equation of the cubic shown in the diagram below.

