

Higher Mathematics

Functions and Graphs

Examples

© Higher Still Notes 2015

This document is provided through HSN extra. Use is permitted within the registered department only.

For more details see http://www.hsn.uk.net/extra/terms/full/

Contents

1	Sets		3
2	Functions	EF	4
	Restrictions on the Domain Identifying the Range		4 5
3	Composite Functions	EF	6
4	Inverse Functions	EF	8
	Formulae for Inverses		8
5	Exponential Functions	EF	10
6	Introduction to Logarithms	EF	11
	Logarithmic Functions		11
8	Graph Transformations	EF	12

1 Sets

List all the numbers in the set $P = \{x \in \mathbb{N} : 1 < x < 5\}$.

Functions 2

EF

Restrictions on the Domain

1. A function *g* is defined by $g(x) = x - \frac{6}{x+4}$. Define a suitable domain for *g*.

2 Functions

EF

Identifying the Range

2. A function f is defined by $f(x) = \sin x^{\circ}$ for $x \in \mathbb{R}$. Identify its range.

Composite Functions 3

EF

- 1. Functions f and g are defined by f(x) = 2x and g(x) = x 3. Find: (a) f(2) (b) f(g(x)) (c) g(f(x))

Composite Functions

EF

2. Functions f and g are defined on suitable domains by $f(x) = x^3 + 1$ and $g(x) = \frac{1}{x}$. Find formulae for h(x) = f(g(x)) and k(x) = g(f(x)).

4 Inverse Functions

EF

Formulae for Inverses

1. A function f is defined, for all real numbers, by $f(x) = x^3 + 1$. Find a formula for its inverse f^{-1} .

Inverse Functions

EF

Formulae for Inverses

2. A function g is defined, for all real numbers, by $g(x) = \frac{x-3}{2}$. Find a formula for its inverse g^{-1} .

5 Exponential Functions

EF

Sketch the curve with equation $y = 6^x$.

6 Introduction to Logarithms

EF

Logarithmic Functions

Sketch the curve with equation $y = \log_6 x$.

8 Graph Transformations

EF

1. The graph of y = f(x) is shown below.

Sketch the graph of y = -f(x) - 2.

9 Graph Transformations

EF

2. Sketch the graph of $y = 5\cos(2x^{\circ})$ where $0 \le x \le 360$.