

Higher Mathematics

Exponentials and Logarithms

Examples

© Higher Still Notes 2015

This document is provided through HSN extra. Use is permitted within the registered department only.

For more details see http://www.hsn.uk.net/extra/terms/full/

Contents

1	Exponentials	EF	3
2	Logarithms	EF	5
3	Laws of Logarithms Rule 1 Rule 2 Rule 3 Combining several log terms	EF	7 7 8 9 11
4	Exponentials and Logarithms to the Base e	EF	13
5	Exponential and Logarithmic Equations Dealing with Constants Solving Equations with unknown Exponents Exponential Growth and Decay	EF	16 19 20 22
6	Graphing with Logarithmic Axes Relationships of the form $y = ab^x$ Equations in the form $y = ax^b$	EF	24 24 26
7	Graph Transformations	EF	27

1 Exponentials

EF

1. The otter population on an island increases by 16% per year. How many full years will it take the population to double?

1 Exponentials

EF

2. The efficiency of a machine decreases by 5% each year. When the efficiency drops below 75%, the machine needs to be serviced.

After how many years will the machine need to be serviced?

2 Logarithms

EF

1. Write $5^3 = 125$ in logarithmic form.

2 Logarithms

EF

2. Evaluate $\log_4 16$.

EF

Rule 1

1. Simplify $\log_5 2 + \log_5 4$.

EF

Rule 2

2. Evaluate $\log_4 6 - \log_4 3$.

EF

Rule 3

3. Express $2\log_7 3$ in the form $\log_7 a$.

EF

4. Evaluate $\log_7 7 + \log_3 3$.

EF

Combining several log terms

5. Evaluate $\log_{12} 10 + \log_{12} 6 - \log_{12} 5$.

EF

Combining several log terms

6. Evaluate $\log_6 4 + 2\log_6 3$.

4 Exponentials and Logarithms to the Base e

EF

1. Calculate the value of $\log_e 8$.

Exponentials and Logarithms to the Base e 4

EF

4 Exponentials and Logarithms to the Base e

EF

3. Simplify $4\log_e(2e) - 3\log_e(3e)$ expressing your answer in the form $a + \log_e b - \log_e c$ where a, b and c are whole numbers.

EF

1. Solve $\log_a 13 + \log_a x = \log_a 273$ for x > 0.

EF

2. Solve
$$\log_{11}(4x+3) - \log_{11}(2x-3) = 1$$
 for $x > \frac{3}{2}$.

EF

3. Solve
$$\log_a(2p+1) + \log_a(3p-10) = \log_a(11p)$$
 for $p > 4$.

EF

Dealing with Constants

4. Solve
$$\log_2 7 = \log_2 x + 3$$
 for $x > 0$.

EF

Solving Equations with unknown Exponents

5. Solve $e^x = 7$.

EF

Solving Equations with unknown Exponents

6. Solve $5^{3x+1} = 40$.

EF

Exponential Growth and Decay

- 7. The mass G grams of a radioactive sample after time t years is given by the formula $G = 100e^{-3t}$.
 - (a) What is the initial mass of radioactive substance in the sample?
 - (b) Find the half-life of the radioactive substance.

ΞF

Exponential Growth and Decay

- 8. The world population, in billions, t years after 1950 is given by $P = 2.54e^{0.0178t}$.
 - (a) What was the world population in 1950?
 - (b) Find, to the nearest year, the time taken for the world population to double.

6 Graphing with Logarithmic Axes

EF

Relationships of the form $y = ab^x$

1. The relationship between two variables, x and y, is of the form $y = ab^x$, where a and b are constants. An experiment to test this relationship produced the data shown in the graph, where $\log_e y$ is plotted against x.

Find the values of *a* and *b*.

6 Graphing with Logarithmic Axes

EF

Relationships of the form $y = ab^x$

2. The results from an experiment were noted as follows:

The relationship between these data can be written in the form $y = ab^x$.

Find the values of a and b, and state the formula for y in terms of x.

6 Graphing with Logarithmic Axes

EF

Equations in the form $y = ax^b$

3. The results from an experiment were noted as follows:

$$\frac{\log_{10} x}{\log_{10} y} \frac{1.70}{1.33} \frac{2.29}{1.67} \frac{2.70}{1.92} \frac{2.85}{2.01}$$

The relationship between these data can be written in the form $y = ax^b$.

Find the values of a and b, and state the formula for y in terms of x.

7 Graph Transformations

EF

1. Shown below is the graph of y = f(x) where $f(x) = \log_3 x$.

- (a) State the value of *a*.
- (b) Sketch the graph of y = f(x+2)+1.

7 Graph Transformations

EF

2. Shown below is part of the graph of $y = \log_5 x$.

Sketch the graph of $y = \log_5\left(\frac{1}{x}\right)$.

7 Graph Transformations

EF

3. The diagram shows the graph of $y = 2^x$.

On separate diagrams, sketch the graphs of:

(a)
$$y = 2^{-x}$$
;

(b)
$$y = 2^{2-x}$$