

Higher Mathematics

Differentiation

Examples

© Higher Still Notes 2015

This document is provided through HSN extra. Use is permitted within the registered department only.

For more details see http://www.hsn.uk.net/extra/terms/full/

Contents

2	Finding the Derivative	RC	4
	Preparing to differentiate		8
	Terms with a coefficient		10
	Differentiating more than one term		14
	Differentiating more complex expressions		16
3	Differentiating with Respect to Other Variables	RC	22
4	Rates of Change	RC	25
	Displacement, velocity and acceleration		27
5	Equations of Tangents	RC	28
6	Increasing and Decreasing Curves	RC	33
8	Determining the Nature of Stationary Points	RC	35
9	Curve Sketching	RC	38
10	Differentiating sinx and cosx	RC	39
11	The Chain Rule	RC	43

0	nsn.uk.net	Differentiat	ion
12	Special Cases of the Chain Rule Powers of a Function Powers of a Linear Function Trigonometric Functions	RC	44 44 46 49
13	Closed Intervals	RC	50
14	Graphs of Derivatives	EF	51
15	Optimisation	Α	52

RC

1. Given
$$f(x) = x^4$$
, find $f'(x)$.

RC

2. Differentiate $f(x) = x^{-3}$, $x \ne 0$, with respect to x.

RC

3. Differentiate $y = x^{-\frac{1}{3}}$, $x \ne 0$, with respect to x.

RC

4. Find the derivative of $x^{\frac{3}{2}}$, $x \ge 0$, with respect to x.

RC

Preparing to differentiate

1. Differentiate \sqrt{x} with respect to x, where x > 0.

RC

Preparing to differentiate

2. Given
$$y = \frac{1}{x^2}$$
, where $x \neq 0$, find $\frac{dy}{dx}$.

RC

Terms with a coefficient

1. A function f is defined by $f(x) = 2x^3$. Find f'(x).

RC

Terms with a coefficient

2. Differentiate $y = 4x^{-2}$ with respect to x, where $x \neq 0$.

RC

Terms with a coefficient

3. Differentiate
$$\frac{2}{x^3}$$
, $x \neq 0$, with respect to x .

RC

Terms with a coefficient

4. Given
$$y = \frac{3}{2\sqrt{x}}$$
, $x > 0$, find $\frac{dy}{dx}$.

RC

Differentiating more than one term

1. A function f is defined for $x \in \mathbb{R}$ by $f(x) = 3x^3 - 2x^2 + 5x$. Find f'(x).

RC

Differentiating more than one term

2. Differentiate $y = 2x^4 - 4x^3 + 3x^2 + 6x + 2$ with respect to x.

RC

1. Differentiate
$$y = \frac{1}{3x\sqrt{x}}$$
, $x > 0$, with respect to x .

RC

2. Find
$$\frac{dy}{dx}$$
 when $y = (x-3)(x+2)$.

RC

3. A function f is defined for
$$x \neq 0$$
 by $f(x) = \frac{x}{5} + \frac{1}{x^2}$. Find $f'(x)$.

RC

4. Differentiate
$$\frac{x^4 - 3x^2}{5x}$$
 with respect to x , where $x \neq 0$.

RC

5. Differentiate
$$\frac{x^3 + 3x^2 - 6x}{\sqrt{x}}$$
, $x > 0$, with respect to x .

RC

Differentiating more complex expressions

6. Find the derivative of $y = \sqrt{x}(x^2 + \sqrt[3]{x})$, x > 0, with respect to x.

3 Differentiating with Respect to Other Variables

RC

1. Differentiate $3t^2 - 2t$ with respect to t.

3 Differentiating with Respect to Other Variables

RC

2. Given
$$A(r) = \pi r^2$$
, find $A'(r)$.

3 Differentiating with Respect to Other Variables

RC

3. Differentiate px^2 with respect to p.

4 Rates of Change

RC

1. Given $f(x) = 2x^5$, find the rate of change of f when x = 3.

4 Rates of Change

RC

2. Given
$$y = \frac{1}{x^{\frac{2}{3}}}$$
 for $x \neq 0$, calculate the rate of change of y when $x = 8$.

Rates of Change 4

RC

Displacement, velocity and acceleration

3. A ball is thrown so that its displacement s after t seconds is given by $s(t) = 12t - 5t^2$. Find its velocity after 2 seconds.

RC

1. Find the equation of the tangent to the curve with equation $y = x^2 - 3$ at the point (2,1).

RC

2. Find the equation of the tangent to the curve with equation $y = x^3 - 2x$ at the point where x = -1.

RC

3. A function f is defined for x > 0 by $f(x) = \frac{1}{x}$.

Find the equation of the tangent to the curve y = f(x) at P.

RC

4. Find the equation of the tangent to the curve $y = \sqrt[3]{x^2}$ at the point where x = -8.

RC

5. A curve has equation $y = \frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x + 5$. Find the coordinates of the points on the curve where the tangent has gradient 4.

Increasing and Decreasing Curves 6

1. A curve has equation $y = 4x^2 + \frac{2}{\sqrt{x}}$.

Determine whether the curve is increasing or decreasing at x = 10.

6 Increasing and Decreasing Curves

RC

2. Show that the curve $y = \frac{1}{3}x^3 + x^2 + x - 4$ is never decreasing.

8 Determining the Nature of Stationary Points

RC

1. A curve has equation $y = x^3 - 6x^2 + 9x - 4$. Find the stationary points on the curve and determine their nature.

8 Determining the Nature of Stationary Points

RC

2. Find the stationary points of $y = 4x^3 - 2x^4$ and determine their nature.

8 Determining the Nature of Stationary Points

RC

3. A curve has equation $y = 2x + \frac{1}{x}$ for $x \ne 0$. Find the *x*-coordinates of the stationary points on the curve and determine their nature.

9 Curve Sketching

RC

Sketch the curve with equation $y = 2x^3 - 3x^2$.

RC

1. Differentiate $y = 3\sin x$ with respect to x.

RC

1. A function f is defined by $f(x) = \sin x - 2\cos x$ for $x \in \mathbb{R}$. Find $f'(\frac{\pi}{3})$.

RC

2. A function f is defined by $f(x) = \sin x - 2\cos x$ for $x \in \mathbb{R}$. Find $f'(\frac{\pi}{3})$.

RC

3. Find the equation of the tangent to the curve $y = \sin x$ when $x = \frac{\pi}{6}$.

11 The Chain Rule

RC

If
$$y = \cos\left(5x + \frac{\pi}{6}\right)$$
, find $\frac{dy}{dx}$.

RC

Powers of a Function

1. A function f is defined on a suitable domain by $f(x) = \sqrt{2x^2 + 3x}$. Find f'(x).

RC

Powers of a Function

2. Differentiate $y = 2\sin^4 x$ with respect to x.

RC

Powers of a Linear Function

3. Differentiate $y = (5x + 2)^3$ with respect to x.

RC

Powers of a Linear Function

4. If
$$y = \frac{1}{(2x+6)^3}$$
, find $\frac{dy}{dx}$.

RC

Powers of a Linear Function

5. A function f is defined by $f(x) = \sqrt[3]{(3x-2)^4}$ for $x \in \mathbb{R}$. Find f'(x).

RC

Trigonometric Functions

6. Differentiate $y = \sin(9x + \pi)$ with respect to x.

13 Closed Intervals

RC

A function f is defined for $-1 \le x \le 4$ by $f(x) = 2x^3 - 5x^2 - 4x + 1$. Find the maximum and minimum value of f(x).

14 Graphs of Derivatives

EF

The curve y = f(x) shown below is a cubic. It has stationary points where x = 1 and x = 4.

Sketch the graph of y = f'(x).

15 Optimisation

Α

1. Small wooden trays, with open tops and square bases, are being designed. They must have a volume of 108 cubic centimetres.

The internal length of one side of the base is x centimetres, and the internal height of the tray is h centimetres.

(a) Show that the total internal surface area A of one tray is given by

$$A = x^2 + \frac{432}{x}$$
.

(b) Find the dimensions of the tray using the least amount of wood.

15 Optimisation

A

2. The point P lies on the graph of $f(x) = x^2 - 12x + 45$, between x = 0 and x = 7.

A triangle is formed with vertices at the origin, P and (-p,0).

(a) Show that the area, A square units, of this triangle is given by

$$A = \frac{1}{2} p^3 - 6 p^2 + \frac{45}{2} p.$$

(b) Find the greatest possible value of *A* and the corresponding value of *p* for which it occurs.