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2 Finding the Derivative RC 

1. Given ( ) 4f x x= , find ( )f x′ . 
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2 Finding the Derivative RC 

2. Differentiate ( ) 3f x x −= , 0x ≠ , with respect to x. 
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2 Finding the Derivative RC 

3. Differentiate 
1
3y x−

= , 0x ≠ , with respect to x. 
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2 Finding the Derivative RC 

4. Find the derivative of 
3
2x , 0x ≥ , with respect to x. 
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2 Finding the Derivative RC 

Preparing to differentiate 

1. Differentiate x  with respect to x, where 0x > . 
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2 Finding the Derivative RC 

Preparing to differentiate 

2. Given 2

1y
x

= , where 0x ≠ , find dy
dx

. 
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2 Finding the Derivative RC 

Terms with a coefficient 

1. A function f  is defined by ( ) 32f x x= . Find ( )f x′ . 
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2 Finding the Derivative RC 

Terms with a coefficient 

2. Differentiate 24y x −=  with respect to x, where 0x ≠ . 
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2 Finding the Derivative RC 

Terms with a coefficient 

3. Differentiate 3

2
x

, 0x ≠ , with respect to x. 
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2 Finding the Derivative RC 

Terms with a coefficient 

4. Given 3
2

y
x

= , 0x > , find dy
dx

. 
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2 Finding the Derivative RC 

Differentiating more than one term 

1. A function f  is defined for x∈  by ( ) 3 23 2 5f x x x x= − + . 

 Find ( )f x′ . 
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2 Finding the Derivative RC 

Differentiating more than one term 

2. Differentiate 4 3 22 4 3 6 2y x x x x= − + + +  with respect to x. 
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2 Finding the Derivative RC 

Differentiating more complex expressions 

1. Differentiate 
1

3
y

x x
= , 0x > , with respect to x. 
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2 Finding the Derivative RC 

Differentiating more complex expressions 

2. Find dy
dx

 when ( )( )3 2y x x= − + . 
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2 Finding the Derivative RC 

Differentiating more complex expressions 

3. A function f  is defined for 0x ≠  by ( ) 2

1
5
xf x

x
= + . Find ( )f x′ . 
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2 Finding the Derivative RC 

Differentiating more complex expressions 

4. Differentiate 
4 23

5
x x

x
−

 with respect to x, where 0x ≠ . 
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2 Finding the Derivative RC 

Differentiating more complex expressions 

5. Differentiate 
3 23 6x x x

x
+ −

, 0x > , with respect to x. 
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2 Finding the Derivative RC 

Differentiating more complex expressions 

6. Find the derivative of ( )2 3y x x x= + , 0x > , with respect to x. 
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3 Differentiating with Respect to Other Variables RC 

1. Differentiate 23 2t t−  with respect to t. 
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3 Differentiating with Respect to Other Variables RC 

2. Given ( ) 2A r rπ= , find ( )A r′ . 
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3 Differentiating with Respect to Other Variables RC 

3. Differentiate 2px  with respect to p. 
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4 Rates of Change RC 

1. Given ( ) 52f x x= , find the rate of change of f  when 3x = . 
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4 Rates of Change RC 

2. Given 2
3

1y
x

=  for 0x ≠ , calculate the rate of change of y when 8x = . 
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4 Rates of Change RC 

Displacement, velocity and acceleration 

3. A ball is thrown so that its displacement s after t seconds is given by 
( ) 212 5s t t t= − . 

 Find its velocity after 2 seconds. 
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5 Equations of Tangents RC 

1. Find the equation of the tangent to the curve with equation 2 3y x= −  at the 
point ( ) 2,1 . 
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5 Equations of Tangents RC 

2. Find the equation of the tangent to the curve with equation 3 2y x x= −  at the 
point where 1x = − . 
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5 Equations of Tangents RC 

3. A function f  is defined for 0x >  by ( ) 1f x x= . 

Find the equation of the tangent to the curve ( )y f x=  at P. 

 

P 

x 

y 

O 

2 ( )y f x=
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5 Equations of Tangents RC 

4. Find the equation of the tangent to the curve 23y x=  at the point where 8x = − . 
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5 Equations of Tangents RC 

5. A curve has equation 3 21 1
3 2 2 5y x x x= − + + . 

 Find the coordinates of the points on the curve where the tangent has gradient 4. 
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6 Increasing and Decreasing Curves RC 

1. A curve has equation 2 24y x
x

= + . 

 Determine whether the curve is increasing or decreasing at 10x = . 
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6 Increasing and Decreasing Curves RC 

2. Show that the curve 3 21
3 4y x x x= + + −  is never decreasing. 
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8 Determining the Nature of Stationary Points RC 

1. A curve has equation 3 26 9 4y x x x= − + − . 

 Find the stationary points on the curve and determine their nature. 



  Differentiation hsn .uk.net 

8 Determining the Nature of Stationary Points RC 

2. Find the stationary points of 3 44 2y x x= −  and determine their nature. 
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8 Determining the Nature of Stationary Points RC 

3. A curve has equation 12y x
x

= +  for 0x ≠ . Find the x-coordinates of the 

stationary points on the curve and determine their nature. 
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9 Curve Sketching RC 

Sketch the curve with equation 3 22 3y x x= − . 
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10 Differentiating sinx and cosx RC 

1. Differentiate 3siny x=  with respect to x. 
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10 Differentiating sinx and cosx RC 

1. A function f  is defined by ( ) sin 2cosf x x x= −  for x∈ . 

 Find ( )3f π′ . 
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10 Differentiating sinx and cosx RC 

2. A function f  is defined by ( ) sin 2cosf x x x= −  for x∈ . 

 Find ( )3f π′ . 
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10 Differentiating sinx and cosx RC 

3. Find the equation of the tangent to the curve siny x=  when 6x π= . 
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11 The Chain Rule RC 

If ( )6cos 5y x π= + , find dy
dx

. 
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12 Special Cases of the Chain Rule RC 

Powers of a Function 

1. A function f  is defined on a suitable domain by ( ) 22 3f x x x= + . 
Find ( )f x′ . 
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12 Special Cases of the Chain Rule RC 

Powers of a Function 

2. Differentiate 42siny x=  with respect to x. 
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12 Special Cases of the Chain Rule RC 

Powers of a Linear Function 

3. Differentiate ( )35 2y x= +  with respect to x. 
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12 Special Cases of the Chain Rule RC 

Powers of a Linear Function 

4. If 
( )3

1
2 6

y
x

=
+

, find dy
dx

. 
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12 Special Cases of the Chain Rule RC 

Powers of a Linear Function 

5. A function f  is defined by ( ) ( )43 3 2f x x= −  for x∈ . Find ( )f x′ . 
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12 Special Cases of the Chain Rule RC 

Trigonometric Functions 

6. Differentiate ( )sin 9y x π= +  with respect to x. 
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13 Closed Intervals RC 

A function f  is defined for 1 4x− ≤ ≤  by ( ) 3 22 5 4 1f x x x x= − − + . 

Find the maximum and minimum value of ( )f x . 
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14 Graphs of Derivatives EF 

The curve ( )y f x=  shown below is a cubic. It has stationary points where 1x =  
and 4x = . 

 
Sketch the graph of ( )y f x′= . 

O

y

x

( )y f x=
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15 Optimisation A 

1. Small wooden trays, with open tops and square bases, are being designed. They 
must have a volume of 108 cubic centimetres. 

 
 The internal length of one side of the base is x centimetres, and the internal 

height of the tray is h centimetres. 

 (a) Show that the total internal surface area A of one tray is given by 

2 432 .A x x= +
 

 (b) Find the dimensions of the tray using the least amount of wood. 

x 
h 
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15 Optimisation A 

2. The point P lies on the graph of ( ) 2 12 45f x x x= − + , between 0x =  and 7x = . 

 
A triangle is formed with vertices at the origin, P and ( ),0p− . 

 (a) Show that the area, A square units, of this triangle is given by   
3 2 451

2 26 .A p p p= − +  

 (b) Find the greatest possible value of A and the corresponding value of p for which 
 it occurs. 

O

y

x

( )y f x=

p− 7

( )( )P ,p f p
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